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Chapter 3

Nomenclature

A = cross-sectional area, m’

a = coefficient of linear thermal expansion, °C)!
C,C, = integration constants

C = radial clearance

d = diameter, m

E = modulus of elasticity, Pa

1 = length, m

ng = safety factor

P = force, N

p = pressure, Pa

r = radius, m

Sy = yield strength, Pa

T = torque, N-m

th = thickness, m

t = tolerance, m

Aty, = temperature change, °C

X,y = Cartesian co-ordinates, m

z = axial direction in cylindrical polar co-ordinates, m

= cone angle, deg

= body force per volume, N/m’

= diametral interference, m

= interference or displacement, m
= strain

circumferential direction in cylindrical polar co-ordinates, rad
= coefficient of friction

= Poisson’s ratio

= density, kg/m’

= normal stress, Pa

= angular velocity, rad/s
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Chapter 3 — Thick-Walled Cylinders and Press Fits
3.1 Introduction

Cylindrical elements are often used as machinery elements. Often a cylindrical shaft in a round
hole may serve a specific purpose. In designing these elements engineers are expected to specify
class of fit or specific tolerances. The tolerances, clearances or interferances are specified
according to the two tables on page 388 in the text.

Of primary concern in this course are the elements which are held together by the force caused
by elastic deformation as one element is forced into another to form the part. The theory
governing the design of these parts is developed from elastic theory applied to the stress — strain
relationships in thick-walled cylinders. A wall is considered thick if it is '/;o the cylinder radius
or more.

3.2 Thick-Walled Cylinders
3.2.1 Stress Distribution

In thick-walled cylinders under internal and/or external pressure, the principal stresses are o, and
o in the normal plane and o, in the longitudinal direction. The longitudinal o, is not significant
because: (1) It is equal to zero in open-ended cylinders, (2) It falls between o, and 6y and, hence,
does not enter commonly used maximum shear stress theory, (3) It is uniform across the cross-
section and along the length so that it does not influence o, and 4. Hence, the condition of
plane stress exists.

The principal stress o, and oy for a thick-walled cylinder under internal and/or external pressure
as shown in Fig. 1.1 are given by the following equations derived in Chapter 10 of textbook:

Fig. 3.1 Thick-walled cylinder under internal and external pressures
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The stress distribution is plotted in Fig. 3.2 for p; and p, acting alone.

(a) p; acting alone (b) p, acting alone

Fig. 3.2 Stress distribution
The radial displacement d; is given by
r
6, = Lloy-vo,) (3.3)

where v is Poisson’s ratio and E is the modulus of elasticity of the material.

3.2.2 Limiting Internal Pressure for Solid Cylinders

The allowable internal pressure for solid cylinders is limited not by wall thickness but by the
yield strength of the cylinder material. To illustrate this fact, assume ductile material and the
maximum shear stress theory for yielding, outside pressure p, = 0.

Yielding will occur at the inner surface of the cylinder (r = r;) when

http://www.technonet.co.kr 28



o, -0, =21,

Substitute for o, and oy from Egs. (3.1) and (3.2) with r =1, p, = 0 results

2
ro pi
21, =2———
ro -ri
or
T
I, =T, z (3.4)
Ty _pi

It is seen as p; approaches ty, the material yield strength, the required radius b becomes infinite.
Hence, the allowable internal pressure can not be made arbitrarily high by making the cylinder
wall arbitrarily thick. Furthermore, it is obvious that yielding will commence when the bulk of
the material, with increasing r, is at low stress. Hence, solid thick walled cylinders use material
inefficiently. Material usage can be greatly improved by properly designed compound thick
cylinders.

3.3 Compound Cylinders

A compound cylinder is made by press-fitting one or more jackets around an inner cylinder.
This causes a residual compressive stress G at the cylinder bore (at r = r;) when the internal
pressure is zero. Then when the working pressure p; is applied, the resulting tangential stress is
superimposed with the residual tangential stress leaving a reduced net cy.

3.3.1 Shrink and Press Fit Stresses

In a shrink or press fit, the residual stresses generated depend on the amount of interference.
Assume two cylinders as shown in Fig. 3.3, in which

D, - D; = 26, = diametral interference
In order to be assembled at radius 1y, the larger tube must displace outward at ¢ by the amount uy,,

the smaller tube must displace inward at r¢ by the amount d,. The total displacement must equal
the diametral interference, A, or
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Fig. 3.3 Interference of metal in press fit

A=2(5,-5,) (3.5)

The displacement is given by Eq. (3.3), that is, for outer tube (or disk)

r
) =Ef(ag ~vo,)

ro

Substituting Egs. (3.1) and (3.2) for p, = 0, ri =1, T = 1, pi = P, results in
2 2
T r, +r;
5r0 Epc[ﬁ_'_vJ (36)

Similarly, for inner tube (or shaft)
r

S5, =—(c,-vo
(5, -vo,)

1

Substituting Egs. (3.1) and (3.2) for pj=0, 1, =1, r = 1, Po = Pe, results in

2 2
T T +I'i
5ri _Efpc( fz 2 V\] (37)
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(3.8)

Thus the contact pressure, p., due to interference alone, is

b = EA(rf ? ;riZXrozz—rfz) (3.9)
4r, (ro - )

The interference stresses can now be calculated by Eqgs. (3.1) and (3.2) with the following
substitutions:

Pe

(a) For the inner tube (or shaft) (b) For the outer tube (or disk)

(a) interference stresses (b) superposed stresses

Fig. 3.4 Calculation of the interference stresses
Fig. 3.5 Stress distribution

The calculated interference stresses are shown in Fig. 3.5(a). Stresses due to p; can be easily

superposed as shown in Fig. 3.5(b).

Examplel: A 200-mm-diameter steel shaft is to have a press fit in a 500-mm-diameter cast
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iron disk. The maximum tangential stress in the disk is to be 35 MPa. The

modulus of elasticity for steel is 206,900 MPa and half this amount for cast iron.

Poisson’s ratio is equal to 0.3.

Find:

(a) the required diametral interference of metal.

(b) the force required to press the parts together if the coefficient of friction is
equal to 0.12 and the disk is 250 mm thick in the axial direction.

(c) the torque which the joint could carry because of the shrink fit pressure.

Solution: (a) By Eq. (3.2) or from Fig. 3.2(a): with r;= 100 mm, r, =250 mm, and p, =0, r
=Tj, O = 35 MPa

r -1’ 2502 —100>
pc :pi = 2 Gt =

5 _ﬁx35:25.3MPa
r,” +1 250 +100

For disk: By Eq. (3.6): with ry= 100 mm, r, = 250 mm

2 2 2 2
I, (ro +y +V]_100><25.3(250 +100

O g P T, 2507 ~100°

+0.3|=0.0412mm
E 1,

2.069x10°
I, 2

outward, that is, increase in hole radius

For shaft: By Eq. (3.7): with ry=100 mm, r; =0

5y =—— V|=———""""(1-0.3) = -0.0086 mm
e r’-r’ 2.069><105( )

r, [rfzﬂiz_J 100x25.3

Inward, that is, decrease in shaft radius
By Eq. (3.5): A=2 (61 - Lsi) =2 (0.0412 + 0.0086) = 0.100 mm
(b): Force required for assembly: F =200t 250 x 25.3 x 0.12 =477,000 N

(c): Torque carried by press fit: T =477,000 x 100 = 47,700,000 Nmm
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3.3.2 Design of Compound Cylinders

Given: internal pressure p;, bore radius r;, and outer radius r,.
Required: optimum radius rr and optimum pressure p..

Assume the maximum shear stress theory as a basis of the design.

Assume that for optimum design, the maximum shear stress in the inner tube, T, is equal to the

maximum shear stress in the outer tube, Tpo.

Tmi = Tmo

Evaluate 1y, at r = 1j, superposing stresses due to p. and p;.
Evaluate 1, at r = ry, superposing stresses due to pe.
Equate 1y, and t,, and obtain

Substitute p. in T, and obtain

drn,
dr

Take

= 0 and obtain optimum c.

Substitute Eq. (3.12) into Eq. (3.10) and obtain optimum p.

p.(r,—1:)

P =0, +r,)
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(3.13)
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Substitute p. from Eq. (3.13) into Eq. (3.11) to obtain a convenient expression for Tm. in
optimum design.

Tm ™ m (3.14)
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